Comprehensive Guide to AI/ML Solutions in Google Cloud

Artificial intelligence is the use of technologies to build machines and computers that can mimic cognitive functions (see images, listen to speech, understand text, make recommendations, etc.) associated with human intelligence.  Machine learning is a subset of AI that lets a machine learn from data without being explicitly programmed. 

Google Cloud Platform (GCP) offers a rich suite of AI and machine learning tools catering to users across different experience levels — from business analysts to seasoned ML engineers. Whether you’re analyzing structured data, classifying images, building custom deep learning models, or tapping into generative AI, there’s a GCP service tailored for you. 

In this expanded guide, you’ll learn: 

  • Key AI/ML tools in Google Cloud 
  • How to use them from the Cloud Console 
  • Practical examples and sample code 
  • Use cases, limitations, and best practices 
  • A comprehensive summary table to guide your choices 

1. BigQuery ML 

BigQuery ML democratizes machine learning by enabling analysts to build models using standard SQL syntax directly within BigQuery. It’s ideal for use cases involving large, structured datasets — like customer churn prediction, sales forecasting, and classification tasks. 

Key Features 

  • Supports classification, regression, time series, and clustering.
  • Uses built-in SQL functions for training, evaluation, and prediction.
  • No need to move data outside BigQuery.

Accessing BigQuery ML 

  1. Navigate to BigQuery Studio – https://console.cloud.google.com/bigquery 
  1. Open a project and select your dataset. 
  1. Use the SQL workspace to run queries like CREATE MODEL or ML.PREDICT. 

Sample: Logistic Regression 

CREATE OR REPLACE MODEL `my_dataset.customer_churn_model` 
OPTIONS(model_type='logistic_reg') AS 
SELECT 
  tenure, 
  monthly_charges, 
  contract_type, 
  churn 
FROM 
  `my_dataset.customer_data`;


Best Practices 

  • Normalize your numeric features before training.
  • Use ML.EVALUATE to assess model performance.
  • Partition of large datasets for efficient model training.

2. Vertex AI 

Vertex AI is GCP’s fully managed ML platform that provides a single UI and API for the complete ML lifecycle. It includes support for AutoML, custom model training, pipelines, feature store, and model deployment. 

a) Vertex AI AutoML 

AutoML simplifies model training by abstracting the heavy lifting of data preprocessing, feature selection, and hyperparameter tuning. It supports: 

  • Tabular classification/regression 
  • Image classification/object detection 
  • Text sentiment/entity analysis 
  • Video classification 


Accessing AutoML 

  1. Go to Vertex AI Dashboard – https://console.cloud.google.com/vertex-ai 
  1. Click “Train new model”. 
  1. Choose your data type (tabular, image, text, etc.). 
  1. Upload or link to your dataset. 
  1. Follow the guided training wizard. 


Sample Code: Image AutoML (Python) 

from google.cloud import aiplatform 
 
aiplatform.init(project="your-project", location="us-central1") 
 
dataset = aiplatform.ImageDataset.create( 
    display_name="my-image-dataset", 
    gcs_source=["gs://your-bucket/images/"], 
    import_schema_uri=aiplatform.schema.dataset.ioformat.image.single_label_classification, 
) 
 
job = aiplatform.AutoMLImageTrainingJob( 
    display_name="image-classifier-job", 
    model_type="CLOUD", 
    multi_label=False, 
) 
 
model = job.run( 
    dataset=dataset, 
    model_display_name="my-image-model", 
    training_filter_split={"training_fraction": 0.8, "validation_fraction": 0.1, "test_fraction": 0.1}, 
) 


Limitations 

  • Training time depends on data size and complexity.
  • Less control over model internals.

b) Vertex AI Custom Training 

Custom training is for advanced users who want to use frameworks like TensorFlow, PyTorch, or XGBoost. You can train models using your own scripts in Docker containers or managed Jupyter environments. 


Accessing Custom Training 

  1. In Vertex AI, go to TrainingCustom Jobs
  1. Choose your container or upload a training script. 
  1. Specify machine specs (CPUs, GPUs, TPUs). 


Sample Code (Python SDK) 

from google.cloud import aiplatform 
 
aiplatform.init(project="your-project-id", location="us-central1") 
 
job = aiplatform.CustomTrainingJob( 
    display_name="custom-train-job", 
    script_path="train.py", 
    container_uri="gcr.io/cloud-aiplatform/training/tf-cpu.2-11:latest", 
    model_serving_container_image_uri="gcr.io/cloud-aiplatform/prediction/tf2-cpu.2-11:latest" 
) 
 
model = job.run(replica_count=1, machine_type="n1-standard-4") 


Use Cases 

  • NLP models using Transformers.
  • Computer vision models with custom CNNs.
  • Reinforcement learning pipelines.

3. Pre-trained APIs 

Google Cloud offers pre-trained APIs that let you access powerful AI capabilities with minimal setup. These are RESTful services available via API calls or SDKs. 

Key Services 

API Capabilities 
Vision API Image labeling, OCR, object detection 
Natural Language Sentiment, syntax, entity recognition 
Speech-to-Text Audio transcription 
Text-to-Speech Audio generation from text 
Translation Language translation 


Accessing Pre-trained APIs 

  1. Go to API Libaray – https://console.cloud.google.com/apis/library 
  1. Enable the required API. 
  1. Create credentials (API key or service account). 
  1. Use client libraries (Python, Node.js, Java, etc.) or REST calls. 


Sample: Vision API (Label Detection) 

from google.cloud import vision 
 
client = vision.ImageAnnotatorClient() 
 
with open("photo.jpg", "rb") as image_file: 
    content = image_file.read() 
 
image = vision.Image(content=content) 
response = client.label_detection(image=image) 
 
for label in response.label_annotations: 
    print(f"{label.description}: {label.score:.2f}") 


4. Generative AI with Gemini  

Google’s Gemini APIs power generative AI features such as chatbots, summarization, code completion, and document synthesis. These are hosted on Vertex AI with tools like Model Garden and Vertex AI Studio. 


Accessing Generative AI 

  1. Visit Vertex AI Studio – https://console.cloud.google.com/vertex-ai/studio 
  1. Use a prompt gallery or freeform chat interface. 
  1. Choose a language model (Gemini Pro, Gemini Flash, etc.). 
  1. For programmatic access, use vertexai Python SDK. 


Sample Code: Text Generation 


Use Cases 

  • Automating customer service (chatbots).
  • Creative writing or story generation. 
  • Code suggestions or bug fixes.


5. Choosing the Right Tool 

Use Case Recommended Service Ideal User Code Requirement Notes 
Predict outcomes with SQL BigQuery ML Data analysts No Great for structured data 
Train models with minimal code Vertex AI AutoML Citizen developers Low Handles preprocessing, tuning 
Train advanced ML/DL models Vertex AI Custom ML engineers High Use your own framework and logic 
Extract insights from media/files Pre-trained APIs All developers Low Fastest way to use AI 
Build chatbots or code generators Generative AI (Gemini) All developers Low Great for LLM and content generation tasks 


6. Conclusion and Resources 

Google Cloud provides one of the most comprehensive, scalable, and user-friendly AI ecosystems available today. With services for every level of expertise, you can start with SQL in BigQuery ML and grow into training deep models in Vertex AI. Pair that with powerful APIs and generative tools — and you have everything you need to build production-ready AI. 


Helpful Links


Happy experimenting! 

Share this:

Want help modernizing

your applications?

Let’s Talk

    CloudIQ is a leading Cloud Consulting and Solutions firm that helps businesses solve today’s problems and plan the enterprise of tomorrow by integrating intelligent cloud solutions. We help you leverage the technologies that make your people more productive, your infrastructure more intelligent, and your business more profitable. 

    US

    626 120th Ave NE, Suite B102, Bellevue,

    WA, 98005.

    INDIA

    Chennai One IT SEZ,

    Module No:5-C, Phase ll, 2nd Floor, North Block, Pallavaram-Thoraipakkam 200 ft road, Thoraipakkam, Chennai – 600097


    © 2025 CloudIQ Technologies. All rights reserved.

    Get in touch

    Please contact us using the form below

      USA

      626 120th Ave NE, Suite B102, Bellevue, WA, 98005.

      +1 (206) 203-4151

      INDIA

      Chennai One IT SEZ,

      Module No:5-C, Phase ll, 2nd Floor, North Block, Pallavaram-Thoraipakkam 200 ft road, Thoraipakkam, Chennai – 600097

      +91-044-43548317

      Get in touch

      Please contact us using the form below

        USA

        626 120th Ave NE, Suite B102, Bellevue, WA, 98005.

        +1 (206) 203-4151

        INDIA

        Chennai One IT SEZ,

        Module No:5-C, Phase ll, 2nd Floor, North Block, Pallavaram-Thoraipakkam 200 ft road, Thoraipakkam, Chennai – 600097

        +91-044-43548317